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AN OPTIMIZATION METHOD FOR THE REDUCTION
OF PROPELLER UNSTEADY FORCES

Thomas S. Mautner
Naval Occan Systems Center
San Dicgo. CA 92152

ABSTRACT

Bascd on the work of Greenblatt (1978), an enhanced optimiza-
tion techaique for the reduction of propeller unsteady forces and
the determination of skew distributions has been developed. The
current mcthod provides an efficient propeiler design tool capa-
ble of dctermining a variety of cubic or quadratic skew distribu-
tions, subject to constraints, which minimize the unsteady forces
produced by the various harmonic components of the input
wake. The original skew optimization method was extended to
include higher order harmonics, and the original force calculation
method was replaced by 4R extendéd version of the method
developed by Thompson (1976). "Calculation of forces and skew
distributions associated with 3 representative propellcr show that
acceptable reduction of unsteady forces can be obrained without
having to place severe restrictions on the model constraints,

NOMENCLATURE
3. b,  Fourier coctficicnts
Polynomial coefficients
Ay Muitiplicative factor
Agr Vehicle frontal area

€uOrc, Fourier cocflicient magnitude = ( a2 + b3 )%
* Complex Fourier coctTicient = a_-ib,,

C Propeller blade chord length

Co Vchicle drag cocflicicnt = Drag/ woV72A,

C Blade section lift cocMicicnt

Cp Phase angle =tan“{(a,,'b,,)

Cq Torque cocflicient = Torque/ wpV721R?

Cr Thrust coefTicient = Thrust/ wpV2sR®

D Propeller diameter

F, Cost function

Fy,F,  Unsteady side forces

F™ Total unsteady side force for the m-th harmonic
F~ Unsteady thrust for the m-th harmonic

G Constraint function

Im {maginary part of a compiex function

j Index taking on valucs = |,...P

3 Advance ratio = ¢ V,, 1 R

k The reduced frequency = wCu/V,

K(k) Sears’ function ,\5
L Lift force on a airfoil/blade section %‘f‘\
m Order of the propeller force harmonic 9
M Moment/Torque on a blade element

n Index taking on values =mN,

Ny Number of prapelter blades

P Num!m: of blade elements having width Ar

PC Propulsive coefficient = (Thrust - V.:/(Torque - 1)
Pe Penalty function

4 Radial coordinate

' Hub radius

L, Starting radius of the skew distribution

i Propeiler tip radius

Ar Width of the j th biade element

R Propelier radius

R. 'Od)' radius

Re Real part of 3 complex function

£ 8 Starting slope of the skew distribution

S Skew distribution siope at the propeller tip

TUB poper s Goularws 0 wort of e U.S. Governmons s0d '
994 SUbiun 89 COPYVIght Groteunive i 1w Uniied Sistes.

t Time

T«.T, Unsteady moments

Timu Total unsteady moment for the m th harmonic

T Unsteady torque for the m th harmonic

T Horlock's {unction

v Velocity

v, Free stream velocity or vehicle speed

Vip Propeller blade tip speed

Vi Nondimensional, resultant rclative velocity of blade
scction and fluid

w Weighting function

Wp Ratio W(m=12)/W(m=24)

Xv2 Rectangular coordinates

X Radial position s(r-r,,)/(R-g,)

X Vector in parameter space

a Angle of artack of a blade clemert

g Blade section pitch angle (radians)

m Propclicr blade spacing = 2x1/N,,

w Frequency

] Angular velocity of the propellcr

& Phase shilt = ¢ + n

v Mid-Chord skew angle

% Mid-Chord skew angle at the propeller tip

[} Fluid density

e Cavitation number based on {rec strcam static pressure
and velocity
Propeller thrust deduction factor

-

Anguiar coordinate int the direction of propelicr rotation

INTRODUCTION

One current and important issue in the design of both
marine and aircraft propeliers is the reduction of propuisor gen-
eratcd noise. ller designers are concerned with
the reduction of noise due to both the transmission of unsteady
propelicr forces through shafting into the vehicle and propeller
noise radiated into the near and far fields. For exampie. the
reduction of self-noise in & marine vehicle will result in improved
scasor aperation while the reduction of aircraflt noise improves
<abin comfort and reduces ground noise.

Q —————= The problem considered hercin is the generation of

propeller noise due to non-uniform inflow velocity fictds. This
has been and still is an issue of research in the area of macine
propellcrs, and -it is felt that 2 receatly devetoped method of cal-
culating unsteady rm%cify:nl skew distributions (ie.
blade sweep) for marine prope y also be applicabic in the
design and analysis of sircralt propeilersyin particular pusher
propellers. ~Although the sources of the non-uniformities
may bc somewhat difTerent for marine dnd aircraft propelters,
flow non-uniformitics will result in thé generation of unsteady
forces and noise irregardiess of the propelier type. For example, a
propelicr operating on an axi ic body with appendages (a
typical underwater case) experi 2 non-uniform infllow velo-
city field due to the upsteami appendages (for exsmpie Nclson
and Fogarty, 1977) while ’:imd! prop-faa is subjected to flow
non-uniformitics due t0.'the #

engine exhaust and 3

uniform flow field to the wpsteam sirframe geometry (for
examples see Me . 1984; Schulten, 1984; Merzger and
Rohrdach, 1986; Takallu and Block. 1987).

'\’{ 'J —_




bulent wake of a body having upsteam protube

create wake non-uniformities which in turn result in
tcmporal flucruations of blade angic-of-attack. Thes
attack fluctuations result in unsteady blade loadings and the gen-
eration of propeller noise. and the noise sources are character-
ized by three types of unstcady force mechanisms: a) turbulence
injestion; b) vortex shcdding; and c) bladc-rategThe first two

angle-of-

mechanisms typically generate continuous spectrum
radiated noise while blade-rate forces gencrate di
quency noise at various blade-passage frequencies and\harmon-
ics. This paper will address the reduction of Slade-ra i
which provided the original motivation for the applicatipn of
skew in propeller design.

An example of a non-uniform wake incident upon a
propeller is one gencrated by an axisymmetric body with append-
ages. The boundary layer behind the appendage (i.c. figure 1) is
characterized by a compiex velocity field typically having velo-
city excesses at inner radii and velocity defects at the outer radii.
This type of velocity ficid has a complex harmonic zontent distri-
bution and its effect on blade-rate noise cannot be predicted
without detailed examination of the wake and the radial distribu-
tion of propeiler blade forces. -

Techniques are available for computing unsteady
forces and skew distributions, and these methods range from
jow-aspect ratio approximations to unsteadyv airfoil theory to
complete unsteady, lifting-surface methods. However, since no
method was available to systematically determine an optimum
skew distribution for the reduction of unsteady forces, the pro-
peller skew optimization program SKEWOPT (Greenblatt, 1978;
and Parsons and Greenblaw, 1978) was developed. SKEWOPT
determinés a quadratic or cubic skew distribution using an
optimization technique which finds the set of parameters for
which 3 user-defined linear combination of the unsteady force
and moment amplitudes are minimized. SKEWOPT was written
for use in ship propeller design; however, the intention was that,
arter minor modifications such as the inclusion of higher order
harmonic groups, it would be suitable for torpedo and submarine
propeller design. Since the force calculation method in
SKEWOPT was not sufficiently documented. the method was
replaced, and, due to the dilficuities encountered in modifying
SKEWOPT, a new program (SKEWOPT-2), patterned after
SKEWOPT, was written.

In the following discussion, the method used in
SKEWOPT-2 for determining the optimum skew distribution for
a propeller operating on an axisymmetric body with upsteam con-
trol surfaces will be described. The method optimizes the skew
(combination of warp and rake) such that the unsteady propeller
biade-rate forces sre minimized. The forward propeller of &

specifically with a marine propeller application, it is felt that the
method is appiicable to any propeller operating in 3 non-uniform
inflow velocity field.

In the design of wake-adapted propellers, it is impor-
tant that the inflow velocity distribution be properly specified.
The state-of-the-art in boundary layer computations is such that
the inflow velocity fleld, for 2 dbody having appendages located
upsweam of the propuisor, should be determined experimencaily.
Even though circumferentially averaged velocity profiles are suf-

ign calculations, the calculation of
unsteady forces requires that both the radial and circumferential
distril

The velocity data used in this study was obtained
from wind tunnel tests conducted in the Northrop (NORAIR)
subsonic wind tunnel located in Hawthorne, California (sce Nel-
son and Fogarty, 1977). In order to obtain body drag measure-
ments, the 0.6 scale mode! was strut mounted in such a manner to
reduce horizontat buoyancy effects, and the tests were conducted
over a Reynolds number range of 1.3-2.4x10° per foot. The
boundary laycr measurcments were made using a pair of pitot
tube rakes. Onc rake contained four static pressure tubces and the
second rake had eight total head tubes. To avoid the effects of
the strut, wake measurcments were made over an arc slightly
larger than 90° on the upper side of the body, and the center of
the measurement arc coincides with the fin's trailing edge (body
had four identical fins).

The measured wake data, shown in figure 1, exhibits
the velocity excesses at the inner radii and the velocity dcficits at
the outer radii, produced by both viscous and potential effects.
typically found behind an appendage on an axisymmetric body.
The velocity excesses are due to the horseshoe vortex formed at
the appendage ‘body intersection, and the velocity deficits at the
outer radii are due to the {in’s tip vortex (sce, for exampie, Gree-
ley and Milewski, 1986).

Velocity ficlds of this type play an important part in
the design of wake-adapted propellers because the spatial varia-
tions result in the gencration of unsteady forces. The velocity
data in figure | represents a time averaged, spatiaily varving
field, and since the spatial velocity distribution is periodic and
continuous, it may be represented in terms of a Fourier scrics.
For example, the axial component of the velocity, at a position
(1), can be expressed as

et L 30, £ [autricostmd) + bute) sinems) |
] 30-’1 o (R8!

- xel? +E [a_(r)-ib..(r)] exp(imé);‘;

where Re( ) denotes the real part, and the Fouricr JociTicients
are defined by

\'4
v,y

¥ |-

a(r) =

)
att) = L] Y costmi) a0 3
2.V,
bulr) = '—} Lsin(md) ds
vV,

Since, the term a,(r) does not vary in 9, it is associated with the
steady state thrust and torque, snd the additional terms are
sinusoidai fluctuations of the inflow velocity which produce the
wnsteady forces and moments.

P EOM Y

The propeller geometry chosen for the present study is
that for the forward propeiler of a counterrotating propeiler set
designed using the method developed by Nelson (1972, 1973
The design utilized the circumferential mean, inflow velocity
field measured by Nelson and Fogarty (1977) and the parameters
given in table |. The propeiler geometry, shown sghematicany in
figure 2. was determined using the liRting-line portion of Nelson's
design method. The calculated performance parameters for the
counterrotating propeller set are given in table 1 while the detils
of the forward propeller geometry are given in table Z.




Once the velocity ficld and propeller gcomcetry are
determined, the problem of dctcrmining an “optimum” skew dis-
tribution requires the formulation of a nonlincar programming
problem which includes an unsteady force calculation method.
First, the calculation of the unstcady forces will be considered.

NSTEADY FORCE CALCULATION M 0D

During the skew optimization process. unstcady forces
will be calculated many times, therefore, it would be desirable to
usc an cificicnt, incxpensive method. The original version of
SKEWOPT (Grecnbl:m, 1978) had both a two-dimcnsional,
unstcady and a morc time consuming lifting-linc method available
to calculate the forces. To overcome both documentation and
computation problems, the original SKEWOPT [orce calculation
methods were replaced by a method developed by Thompson
(1976). His mcthod divides the propclicr blade into strips which
are considered two-dimensional airfoils. Included in the mcthod
are: 3) the two-dimensional unsteady airfoil theorics of Scars
(1941) and Horlock (1968) which allow consideration of
sinusoidal velocity fluctuations normal and parallel to the inflow
velocity; and b) corrections to the blade lift force duc to the
presence of adjacent propeller blades. The method has been
cxtended to include the cffccts of camber using the method of
Naumann and Yeh (1973) and to calculate the total force and
moment on the propeller. A bricf description of the method fol-
lows (for dctails of the method sce: Thompson, 1976, Mautner,
1987b; and Mautner and Blaisdell, 1987)

Expressions for the unsteady lift acting on a1 two-
dimensional airfoil duc to a periodically varying frec stream velo-
city werc developed by Scars (1941) and Horlock (1968). They
assumed that the airfoil can bc represented by an isolated flat
platc, and that the flow is incompressible, inviscid and irrota-
tional cxcept for surfaces of distributed singufaritics. The airfoil
is replaccd by a distfAbution of vortices. and the shed vorticity is
assumcd to lic on a line paraliel to the unsteady free strcam velo-
city. Also. the inflow velocity and the velocity induced by the
vortex system must satisfy the boundary condition that there is
no flow through the plate. Their lormulation results in an
intcgral cquation dcscribing the vortex distribution, and the solu-
tion of the intcgral cquation viclds the totai velocity on the piate’s
surface. Using Bernoulli's cquation, the pressure distribution on
the upper and lower surfaces of the plate arc obtained, and the
unsteady lift is determined from the pressure diffcrence.

In order to apply two-dimensional, unsteady airfoil
theory to propellers. the propelicr dblade is divided into strips of
width Ar; as indicated in figurc 2. Each bladc clement is then
trcated as an isolated two-dimensional airfoil having at its mid-
point the relative velocity V,. The velocities which determine
V,; are the propeller rotation Qe , the mean axial inflow velocity
V(r#) and the down wash velocity (which for wake-adapted
propeliers includes induced and imterference velocities). The
resulting angle between Qir, and V4 defines the local pitch angle

The varying axiai velocity ficld incident upon the
rotating biade row is resolved into components normal and paral-
lct to V,, . The assumption of a lightly loaded propeller is made,
the velocity fluctuations are expressed in blade fixed coordinates
for each n-th harmonic componcnt, and the phase shift ¢y
depends on both the skew angle ¥; and the blade spacing
molrl/Ny.

Adding the contributions of the gust velocities to the
unsteady lift, and replacing the factor of 2¢ with the blade sec-
tion lift curve slope to account for the additional lift due to adja-
cent diades. one obuaing for the lift and moment on a biade sec-
tion

Ly=- %Ci'- oGV Vel explin(fit=gy])
(3)
. [K(k,,)cosﬂ.-qT(k.u)sinﬂi ]z.‘.rj
M = L @

where the reduced frequency is ky = n3%C/V,; . The lift curve
slopc can be determined cxperimentally or approximated, for
example, by the method of Weinig described in Wislicenus (1965).

As the propelicr rotates, biade position dependent x
and v componcats of the lift vector and the moment arm are gen-
erated. Therefore, in addition to the thrust and torque, there are
x and y force and moment components. Also, it has been shown
that the only harmonics contributing to the thrust and torque are
those of order mN, (somc multipic of bladc number), and the
only harmonics contributing to the sidc forces and moments are
of order mNy=1. Since the contributions from the different har-
monic groups oscillate at different frequencies they shouid be
considered separatcly and doing so rcsulits in the following
expressions for the unsteady forces and moments due to a partic-
ular harmonic group m.

L4 -
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In addition to the abovc forces and moments.
Thompson’s method was extended (Mautner, 1987b; Mautner
and Blaisdcll, 1987) to include calculation of the maximum side
force and bending moment. Briefly, the forces and moments are
expressed in complex form, and, via 2 coordinate rotation, the
derived equations for the total side force and bending moment
vector trace an ellipse where the semi-major axis yiclds the max-
imum amplitude of the side force and bending moment. The
cquations are

Fi¥euN, |8 [l-u-l,-u] =
jnl (l l)
* BN, j-!:l [Lud‘-m]z eu"’
T.‘d - ‘N. [M_"] '“ﬂ
lnl ('2)
+ WN, 2 [Mn-l.«)]' D
=




The subscripts | and 2 used in the force and moment cquations
{5)-12) indicate the foilowing torms of the lift and moment cqua-
tions

o] [ 2 vt

(13)
{K(k,.)cosﬂ,-a,T(k,.)Sinﬂ,}Arjcosa;

(14)

"L' [L“'] W

where the index n takes on the values mNy , mNy+1 or mNy~-1.
This complctes the formulation of unsteady force and moment
equations. A description of the skew optimization method is
given in the next section.

KEW OPTIMIZATION DEL

To dctermine the optimum skew distribution the
above force calculation method was incorporated into a nonlincar
programming problcm. Due to the fact that, in general, all {orces
cannot be minimized simultancously, a scalar cost function
formcd (rom the weighted, lincar combination of the forces and
moments is minimized. The cost function F, is

. wl-bF“.-l W;"’F,’““ \Vi""'ﬂ"’ . wx-ﬂ-r(-:
=27 z T 15
Fo=Z |Tosr, " TosF, T ost,  ost, J( )

where the wcxglns w/=!, are normalized such that their sum over
both m and j (=l ,......4\ equals |. The aormalization factors (i.c.
the stcady state thrust and torque, F, and T, ) are arbitrary; how-
ever, the W/™ are chosen to place cmphasis on the suppression of
particular forces or moments.

Since F, depends upon the skew distribution, ¥(r), onc
could solve for the optimum skew distribution via a variational or
a-dimensional paramcter optimization technique. However, a
more casiblc approach, and the one used here. is 10 use a1 few
parameters in describing the skew distribution and perform an
optimization search in 3 limited parameter space. To accomplish
this, the skew distribution is represented by either g cubic or
quadratic distribution having 3 straight line section with ¥=0.
The skew distribution (see Geenblatt, 1978; Mautner and Blais-
dell, 1987), illustrated in (igure 3, is described by

wr)=A; P +As2 e Agr+Ay OF A,r’m,rm.
¢(r)=0

LSrsn
nsrs 70“6)

The skew distribution given sbove has five free
parameters ( A, , Az, A, Ay, r.).homet.nnmremm_ng-

parameters chosen for use in the current method are the skew at
the propeller tip ¢, the starting skew slope S, = ¥'(r,), the start-
ing radius r,, and the skew slope at the tip S. Additionally, the
physical restriction that ¥{(r,)=0 is made 30 that the skew distri-
Monnmdmmcnbynducinl_mgmberofrmmm-

optimization scarch to be carricd out in cithcr 2 two- or thrce-
dimensional space.

The propellcr skew distribution problem has now becn
formulated as an optimization problem in terms of a few
geometric paramcters. In order to obuin a feasible propeller
geometry, it is nccessary to place some restrictions, such as a
maximum allowable tip skcw, on the gcomcetric parameters. In
doing so. the design problcm becomes 3 constrained, nonlinear
optimization problem where the optimization scarch is restricted
to finding the sct of paramcters which minimizes the cost func-
tion F, while satisfying all of thc constraints placed on the prob-
lem. The constraints used are given in table 4 and are checked
for violation at a given point in the paramcter spacc using the
mecthod developed by Greenblatt (1978). The additional con-
straint that the propcller blade should not curve forward has
been added.

The constrained, nonlincar optimization problem is
represented by

min F.(X) subject to G; (X)2 0 an

where X is a vector in parameter space which dctermines the
skew distribution and G; (X) describes the constraints. There arc
many techniques for solving the unconstrained minimization
problem (sec Parsons, 1975); however, oniv a few mcthods actack
the constrained problem directly. One useful technique is to con-
vert the constraincd problem into an unconstrained problem and
then usc an unconstrained optimization mecthod. This can bz
accomplishcd with the use of an external penalty function which
is added tc a cost function whenever a constraint is violated (i.c.
Gi(X) < 0). The penalty function is

Pe(X,Ar) = F(X) = Ay T min [G(X), 0] as)
[

An unconstrained optimization technique can be applied to
Pe(X ,A,). If no constraint is violated no penaity is added and
the penalty function is the same as the cost function. Since the
penalty added is proportional to the constraint violation, the
optimization method should be forced towards a feasible region
where 0o constraints are violated. This will be the case as long
a8 the multiplicative factor A, is large cnough (%1024); however,
if Ay is t00 small, the search may tend toward an infcasible
region. The optimization technique chosen for use in this mcthod
is the Ncider-Mead simplex search mcthod (Nelder and Mead,
1965), and a demnailed description of the method as coded in the
currcnt computer program is given by Mautner and Blaisdell
(1987).

The computer program which soives the above non-
hmpmmmuduwoblemuanmmmmmmmm
for routine propeller design work. The program has an interactive
input method to accept propelier data and optimization parame-
ters, and the program can be restartcd. for exampie, with dil-
ferent constraint values. In addition to the optimization mode, a
test mode is available for the calculation of unsteady forces for 3
given skew distribution.

NUMERICAL EXAMPLES
EQURIER ANALYSIS
In addition to the specification of propellcr geometry,
s preliminary step in the calculation of unsteady forces and skew

distributions is an ansiysis of the input wake. Examination of the
wnsteady force equations shows that a Fourier amalysis of the




harmonic numbers of intcrest are 4, 8, 12, 16, ... (alt others have
zero magnitude). Also, since 3 six bladed propeller is being used
in this example, thc harmonics of concern include 6, 12. 18, 24,
. Thus for a six bladed propeller operating in 3 four cycle
wake, the only harmonics of interest are 12, 24, 36, ... (If, for
example, a seven bladed propeller was specified, one would con-
sider side forces due to harmonics of order mNy£1.) The radial
distribution of the Fouricr cocfficients and phase angles for the
12th and 24th harmonics are given in figures 4, § and 6. The
results show both the dominance of the 12th harmonic, especially
in the region of r/Rp < 0.5, and the rapid approach to a nearly
zero magnitude of the 24th and higher harmonics. For example,
the peak value of ¢, for the 24th harmonic is 2.5 times lower than
the peak ¢, for the 12th harmonic. The phase angle distributions
(figure 6) show that the phase for the 24th harmeonic is nearly
constant over radius while the phase angle of the 12th harmonic
has a nearly constant positive magnitude for 0 < r/Rp < = 0.5, it
undergoes a sharp phase shift at r/Rg = 0.5, and then has 3
nearly constant negative magnitude over m 0.6 < r/Rg <= 0.9.
Finally, since the harmoanic aumbers of concern are 12, 24, 36,
... the only forces that need to be calculated are the unsteady
'hrust and torque.

UNSTEADY FORCES

To illustrate use of the unsteady force calculation
method, the six bladed propeller geometry and operating parame-
ters (tables 1 and 2) along with the 12th and 24th harmonic dis-
tributions were provided as inputs to the method. The calculated
radial distributions of F, and T, are given in {igures 7 and 8 for
the i2th and 24th harmonics. The radial distributions for
mNy,=12 show that regions of large forces occur in both the inner
and outer portions of the propeller blade. Also. there is 3 distinct
minimum force region, located at r/R = 0.68, which coincides
with the minimum velocity defect/excess region of r;Rg = 0.53
shown in figure 1. The forces for the 24th harmonic are sigaifi-
cantly lower that those for 12th harmonic and increase in magni-
tude with increasing radius. This result follows directly from the
lower harmonic magnitudes for mN,=24. Radial distributions of
forces such as that shown in figures 7 and 8 provide information
rcievant to what portion of the wake is most important in the
production of unstcady forces and in the possible reduction of
these forces by appropriate appendage/vehicle design. A detailed
comparison of the wakes behind various appendage geometries
:mcls the resuiting unsteady forces can be found in Maumer
(19873a).

KEW DISTR!

To demonstrate the types of skew distributions which
can be obtained using the current optimization method, the four
modcls summarized in tables 3 and 4 were used to calculate
"optimum” skew distributions and the magnitude of the unsteady
thrust and tomque associated with the skew distributions. To pro-
vide a reference, the magnitude of the unsteady thrust snd
torque for the unskewed propefler was calculated. Next. each of
the four skew distribution models, with essentially no limits on
the constraints, was specificd. For cxample. the limit on max-
imum tip skew was 2x/Ny. The calculated unsteady thrust and
torques 3are given in table S where the reduction in forces
obtained for cach skew distribution is represented by F,/F, and
T, T, witere the bar represents the unskewed values. The calcu-
lmd skew distributions sre plotted in (igures 9-11 where the
Jetrers correspond 10 the particular cases listed in table 5.

It is clear (rom an examination of the calculated forces
given in table § (cases A, B, C, F) that 3 significant reduction of
the tosal unsteady thrust and torque was schicved for the 24th
harmonic irregardiess of the skew distribution model used. How-
ever, for the 12th harmonic, the quadratic distributions #1 and

#2 (A.B) and the cubic =4 (F) distribution produced signifi-
cantly less reduction in thc magnitude of both the thrust and
torque. The largest force reduction, for mNy,=12, occurs for cubic
#3 (C) which also has a shape (figurc 9) that deviates drastically
from the gencral shape of the other three skew distributions
(A,B,F). The resulting shape of cubic »3 (C) points out a1 poten-
tial problem with the specification of unlimited constraints. While
the method attempts to provide the skew for minimum force
rcduction, it may provide a skew distribution which is not feasi-
ble in terms of final propclier gcometry, The results of applying
constraints to the cubic #3 modcl are shown in figurc 10. When
the starting skew slope is limited, the resulting skew distribution
and force reduction fall in line with the results obtained for the
other modecls (figurc 9).

As shown by equation (15), the skew optimization
problem involves the linear combination of weighted forces. The
weights W; are specified by the propeller designer and thus can
be chosen to place more emphasis on the reduction of a particu-
lar force in a particular harmonic group* To illustrate the effect of
varying the weights W, the cubic #3 and cubic #4 modcls were
used. In addition to the W;=1 used in the previous calculations,
the weights were increased to $ and 10 for the 12th harmonic
while maintaining W;=1 for the 24th harmonic. The results
presented in table 5 and figure 1 show very little change in the
force magnitudcs and the shape of the skew distributions. This
result is not surprising duc to the dominance of the 12th har-
monic magnitude (figures 4 and §).

As mentioned previously, the original motivation for
the introduction of skew into marine propeller design was the
reduction of both blade-rate noise and vehicle vibration. The
basic idca was to introduce a phase shift in the local periodic lift
forces over the radial extent of the blade. The phase shift should
be specificd such that the local forces, at the inner and outer
radii, are acting in opposition. To illustrate the results of applying
the force equations to obtain a phase shify, the radiaf distribution
of the real an imaginary parts of unsteady thrust distributions are
plotted in figures 12 and i3 for mNyw=12. The figures compare
the radial distribution of unstcady thrust for the case of no skew
with the force distribution obtained using the cubic #3 (C) skew
distribution mode!l. The radial distribution of both the real and
imaginary parts of F, demonstrate the acquisition of a phase shift
in the unsteady lift by the large changes in magnitude of the
unsteady force. Due to the character of the 12th harmonic distri-
bution, it is not postible to obtain 8 phase shift in the real part of
F, such that the forces at the inner and outer radii are acting in
opposition; however, the forces are acting in opposition for the
the imaginary part of F,. The results in figures 12 and 13 show
that the forces are shifted from their original condition thus pro-
ducing, at least, some unsiesdy force reduction. Similar results
are obtained for the unsteady thrust associsted with mN, =24 and
the unsteady torque (not shown here) for both the 12th and 24th
harmonics.

The close similarity in most of the skew distributions
(figure 9-11) indicates that satisfactory, but not necessarily
optimum, propeller geometries can be obtained without having to
place severe restrictions on the skew distribution model con-
straints. However, the magnitudes of the unsteady forces and
moments listed in table 5 demonstrate that for an actual propeller
design the effect of parameters such as skew slope and tip skew
aced to be examined closely for its effect on each harmoaic
$roup.
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SUMMARY

A propeller skew optimization program, based upon
Greenbiatt's method, has been developed. The method yses a
quadratic or cubic skew distribution model, and a parameter
search, subject o0 constraints. is performed to determine the
skew distribution which minimizes a lincar combination of the
unsteady forces and moments. kt should be remembered that this
program requires user judgement in the specification of the skew
distribution modc! and constraints.

The two-dimensional, unsteady airfoil theory used in
the unsteady force caiculation method may not be as accurate as
three-dimensional, unsteady lifting-surface methods in predicting
unsteady ioads (ie. for low aspect ratio blades). However, if the
erroes are consistent so that the method predicts the correct
trends in the unsteady forces, the resuiting skew distribution
shouid be reasonably accurate. It should also be notcd that the
original intention of incorporating Thompson's (1976) force cal-
culation method into the optimization program was to provide a
well documented and eflicient method for use, at least, during
the development phase of the skew optimization program.
Although. Thompson (1976) obraincd good agreemcnt between
theory and experiment and the current method provides reason-
able skew distributions, the nced cxists {or additional program
enhancements.

One problem inhcrent in the application of skew
involves the use of wake data obtained without a propeller
present. While the propeller design method of Nelson (1972,
1975) caiculates changes in the circumferential mcan, inflow
velocity Jicld due to presence of the propulsor (i.c. induced and
interference velocitics), the uncorrected, spatially varying inflow
is used 0 determine the unsteady forces. It is known that the
presence of 3 propulsor will cause a change in the streamlines
due to acccleration of the flow, that there may be additional
unsteadiness due 10 the relative motion of the blades and that the
propeller will change the amplitude and phase of the incident
distortion velocity. From these few facts it is apparent that the
incident ~vake shouid be corrected for propulsor effects.

Attempts are being made to develop unsieady force
calculation methods which account for the effccts of both the
presence of the propulsor and the blade skew on the harmonic
content of the incident wake. One such effore is that by Zierke
(1985). He has pointed out that both the amplitude and phasc
angle of the inlet distortion will be modificd by the blade skew
(warp 3ffects both amplitude and phase and rake afTects the
amplitude), and that skew is 2 measure of when a blade section
first encounters a disturbance. Zicrke has developed an unsteady
force caicuiation method which both accounts for the changes in
amplitude and phase of a disturbance due to the presence of a
rotating blade and uses leading edge skew rather than mid-chord
skew to describe the blade. An obvious improvement 0 the
current method would be the incorporation these kinds of
corrections.
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Table 1. Theoretical Performance of the

Table 3. Skew Distridution Models.

Counterrotating Propeller Set
Propellcr radius (in) Rp=R 82
RPM RPM 1400
Propulsive coefTicient PC 0.925
Thrust deduction factor r 0.141
Vehicle speed (knots) v, 43
Drag coefTicient Co 0.115
Advance ratio J 212
Blade surface cavitation o 0.75
Thrust coefficient Cr 0218
Torque coefTicient Cq 0.137
Blade tip speed Vae/Vilr 1.731
Vee/Voa 1.604
Number of blades Ny X Npaa 6x4
Hub radius (in) W 344
Body radius (in) Rs 10.5
Subscripts = F - Forward and A - After Propeller

Table 2. Propeller Geometry and Operating Characteristics

wR_| weiD | 8 | wvyv,
04344 | 00838 | 0.5650 | 0.7200
04634 | 00897 | 05913 | 0.7922
04924 | 0.0953 | 0.6231 0.8625
05214 | 0.1007 | 0.6434 | 09297
0.5504 | 0.1058 | 0.6594 | 09919
0.5794 1 0.1106 | 0.6300 1.0498
06084 | 0.1151 | 0.7001 1.1038
06374 | 0.1193 | 07128 1.1557
0.6665 | 0.1231 0.7157 1.2063
06955 | 0.1266 | 0.7111 1.2555
0.7245 1 0.1296 | 0.7025 1.3038
0.7835 | 0.1321 0.6914 1.3512
0.7825 | 0.1339 | 0.6781 1.3979
08115 | 01346 | 06624 1.4442
08405 | 0.1333 | 0.6432 1.4900
08695 | 01293 | 06194 1.5363
08985 | 0.1214 | 0.5907 | 1.5818
09275 | 0.1090 | 0.5637 1.6257
09565 | 00913 | 0.5446 1.6688
09835 | 0.0679 | 05185 17118

Free Fixed
Model Tvpe Parameters Paramecters
1 Quadratic | v, S, T,= 0
2 Quadratic | ¥,.r, S=0
3 Cubic %. 5.5 f,="0y
4 Cubic Ve, S0y S=0

Table 4. Skew Distribution Constraints

— Constraint Parameters
Skew Start Radius LY 354
Tip Skew Vimia SH <
Skew At Any Radius | ¢, < 9(1) € Vo
Start Skew Slope Simin €8 € S
Slope At Any Radius | 9 0n € 9°(1) € ¥ man




Table 5. Calculated Unsteady Force Reduction

and Tip Skew.

Skew Modcl mNy=12 mN,=24 Skew ©
(see Table 3) F, T, F, T, % Wr
No Skew 381 12.8 134 54 0.0 1

F/E? | T/T? | F/R | TJT,
No Skew 1.00 1.00 1.00 1.00 0.0 1
(A) Quadratic #1 0.70 0.55 0.17 0.07 59.6 i
(B) Quadratic #2 0.65 0.52 0.25 0.17 . 574 1
(C) Cubic =3 0.0 0.19 0.09 0.07 586 |
(D) Cubic =3+ 0.31 0.21 0.14 0.11 59.7 1
(E) Cubic =3+ 0.42 0.29 0.15 0.11 59.1 ]
(F) Cubic =4 0.50 0.37 0.13 0.07 59.8 |
(G) Cubic =3 0.08 0.02 0.1 0.09 59.5 5
(H) Cubic =3 0.08 0.02 0.11 0.09 59.5 10
(I) Cubic =4 0.39 0.26 0.12 0.09 596 5
(J) Cubic =4 042 0.29 0.13 0.09 §9.2 10
Constraints

Tip Skew - Max = 60° and Min = -30°
Maximum, Minimum Skew Siope - 2528
Start Radius - r,=3.44 in

Notes

* Units (F)orce (thrust)-1bs; (T)orque-it-1bs

** Mid-chord tip skew - deg

# Bar indicates no skew thrust and torque

+ Starting slope constraint - -1 < §, € +1

++ Starting slope constraint - ~025 < §, € +0.25
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Figure 1. Circumferential Variation of the Inflow Velocity Field. Figure 2. Description of a Typical Propelier and lts Geometry.
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